Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(13): 2656-2671, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571444

RESUMO

The conversion of methane, CH4, into higher value chemicals using low temperature plasmas is challenged by both improving efficiency and selectivity. One path toward selectivity is capturing plasma-produced methyl radicals, CH3, in a solvent for aqueous processing. Due to the rapid reactions of methyl radicals in the gas phase, the transport distance from the production of the CH3 to its solvation should be short, which then motivates the use of microplasmas. The generation of CH3 in Ar/CH4/H2O plasmas produced in nanosecond pulsed dielectric barrier discharge microplasmas is discussed using results from a computational investigation. The microplasma is sustained in the channel of a microfluidic chip in which the solvent flows along one wall or in droplets. CH3 is primarily produced by electron-impact of and dissociative excitation transfer to CH4, as well as CH2 reacting with CH4. CH3 is rapidly consumed to form C2H6 which, in spite of being subject to these same dissociative processes, accumulates over time, as do other stable products including C3H8 and CH3OH. The gas mixture and electrical properties were varied to assess their effects on CH3 production. CH3 production is largest with 5% CH4 in the Ar/CH4/H2O mixture due to an optimal balance of electron-impact dissociation, which increases with CH4 percentage, and dissociative excitation transfer and CH2 reacting with CH4, which decreases with CH4 percentage. Design parameters of the microchannels were also investigated. Increasing the permittivity of the dielectrics in contact with the plasma increased the ionization wave intensity, which increased CH3 production. Increased energy deposition per pulse generally increases CH3 production as does lengthening pulse length up to a certain point. The arrangement of the solvent flow in the microchannel can also affect the CH3 density and fluence to the solvent. The fluence of CH3 to the liquid solvent is increased if the liquid is immersed in the plasma as a droplet or is a layer on the wall where the ionization wave terminates. The solvation dynamics of CH3 with varying numbers of droplets was also examined. The maximum density of solvated methyl radicals CH3aq occurs with a large number of droplets in the plasma. However, the solvated CH3aq density can rapidly decrease due to desolvation, emphasizing the need to quickly react with the solvated species in the solvent.

2.
Lab Chip ; 24(4): 798-809, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38214152

RESUMO

Gas hydrates form at high pressure and low temperatures in marine sediments and permafrost regions of the earth. Despite forming in nanoporous structures, gas hydrates have been extensively studied only in bulk. Understanding nucleation and growth of gas hydrates in nonporous confinement can help create ways for storage and utilization as a future energy source. Herein, we introduce a new method for studying crystal orientation/tilt during tetrahydrofuran (THF) hydrate crystallization under the influence of nano-confinement using polarized Raman spectroscopy. Uniform cylindrical nanometer size pores of anodic aluminum oxide (AAO) are used as a model nano-confinement, and hydrate experiments are performed in a glass microsystem for control of the flash hydrate nucleation kinetics and analysis via in situ polarized Raman spectroscopy. The average THF hydrate crystal tilt of 56 ± 1° and 30.5 ± 0.5° were observed for the 20 nm and 40 nm diameter pores, respectively. Crystal tilt observed in 20 and 40-nanometer-size pores was proportional to the pore diameter, resulting in lower tilt relative to the axis of the confinement at larger diameter pores. The results indicate that the hydrates nucleation and growth mechanism can depend on the nanoconfinement size. A 1.6 ± 0.01 °C to 1.8 ± 0.01 °C depression in melting point compared to the bulk is predicted using the Gibbs-Thomson equation as a direct effect of nucleation in confinement on the hydrate properties.

3.
Healthc Manage Forum ; 37(1): 30-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37642492

RESUMO

The healthcare sector is in crisis as Internet-based actors attack the digital infrastructure necessary for operations. The growing complexity of systems and events on the world stage have given rise to a dynamic threat landscape that includes nation-states affiliates. Challenging even private industry, healthcare systems and budgets already strained by COVID-19 are struggling to cope. A pandemic style response with new investment and legislation is needed.


Assuntos
COVID-19 , Atenção à Saúde , Humanos , Setor de Assistência à Saúde , Instalações de Saúde , Investimentos em Saúde , COVID-19/epidemiologia
4.
Clin Epigenetics ; 15(1): 169, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865798

RESUMO

Heterozygous SNVs or CNV deletions involving the FOXF1 gene, or its distant enhancer, are causative for 80-90% of cases of alveolar capillary dysplasia with misalignment of pulmonary veins. Recently, we proposed bimodal structure and parental functional dimorphism of the lung-specific FOXF1 enhancer, with Unit 1 having higher activity on the paternal chr16 and Unit 2 on the maternal chr16. Here, we describe a novel unusually sized pathogenic de novo copy-number variant deletion involving a portion of the FOXF1 enhancer on maternal chr16 that implies narrowing Unit 2 to an essential ~ 9-kb segment. Using a restrictase-based assay, we found that this enhancer segment is weakly methylated at ApT adenine, with about twice the frequency of methylation on the maternal versus paternal chr16. Our data provide further insight into the FOXF1 enhancer structure and function.


Assuntos
Síndrome da Persistência do Padrão de Circulação Fetal , Humanos , Recém-Nascido , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Deleção de Sequência , Metilação de DNA , Pulmão/patologia , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/genética
5.
JMIRx Med ; 3(2): e30777, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37725539

RESUMO

BACKGROUND: Higher-than-expected heart failure (HF) readmissions affect half of US hospitals every year. The Hospital Reduction Readmission Program has reduced risk-adjusted readmissions, but it has also produced unintended consequences. Shared care models have been advocated for HF care, but the association of shared care networks with HF readmissions has never been investigated. OBJECTIVE: This study aims to evaluate the association of shared care networks with 30-day HF excessive readmission rates using a longitudinal observational study. METHODS: We curated publicly available data on hospital discharges and HF excessive readmission ratios from hospitals in California between 2012 and 2017. Shared care areas were delineated as data-driven units of care coordination emerging from discharge networks. The localization index, the proportion of patients who reside in the same shared care area in which they are admitted, was calculated by year. Generalized estimating equations were used to evaluate the association between the localization index and the excessive readmission ratio of hospitals controlling for race/ethnicity and socioeconomic factors. RESULTS: A total of 300 hospitals in California in a 6-year period were included. The HF excessive readmission ratio was negatively associated with the adjusted localization index (ß=-.0474, 95% CI -0.082 to -0.013). The percentage of Black residents within the shared care areas was the only statistically significant covariate (ß=.4128, 95% CI 0.302 to 0.524). CONCLUSIONS: Higher-than-expected HF readmissions were associated with shared care networks. Control mechanisms such as the Hospital Reduction Readmission Program may need to characterize and reward shared care to guide hospitals toward a more organized HF care system.

6.
J Chem Phys ; 154(11): 114710, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752371

RESUMO

Various emerging carbon capture technologies depend on being able to reliably and consistently grow carbon dioxide hydrate, particularly in packed media. However, there are limited kinetic data for carbon dioxide hydrates at this length scale. In this work, carbon dioxide hydrate propagation rates and conversion were evaluated in a high pressure silicon microfluidic device. The carbon dioxide phase boundary was first measured in the microfluidic device, which showed little deviation from bulk predictions. Additionally, measuring the phase boundary takes on the order of hours compared to weeks or longer for larger scale experimental setups. Next, propagation rates of carbon dioxide hydrate were measured in the channels at low subcoolings (<2 K from phase boundary) and moderate pressures (200-500 psi). Growth was dominated by mass transfer limitations until a critical pressure was reached, and reaction kinetics limited growth upon further increases in pressure. Additionally, hydrate conversion was estimated from Raman spectroscopy in the microfluidics channels. A maximum value of 47% conversion was reached within 1 h of a constant flow experiment, nearly 4% of the time required for similar results in a large scale system. The rapid reaction times and high throughput allowed by high pressure microfluidics provide a new way for carbon dioxide gas hydrate to be characterized.

7.
Adv Sci (Weinh) ; 8(2): 2002541, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511011

RESUMO

Understanding phase transformations in 2D materials can unlock unprecedented developments in nanotechnology, since their unique properties can be dramatically modified by external fields that control the phase change. Here, experiments and simulations are used to investigate the mechanical properties of a 2D diamond boron nitride (BN) phase induced by applying local pressure on atomically thin h-BN on a SiO2 substrate, at room temperature, and without chemical functionalization. Molecular dynamics (MD) simulations show a metastable local rearrangement of the h-BN atoms into diamond crystal clusters when increasing the indentation pressure. Raman spectroscopy experiments confirm the presence of a pressure-induced cubic BN phase, and its metastability upon release of pressure. Å-indentation experiments and simulations show that at pressures of 2-4 GPa, the indentation stiffness of monolayer h-BN on SiO2 is the same of bare SiO2, whereas for two- and three-layer-thick h-BN on SiO2 the stiffness increases of up to 50% compared to bare SiO2, and then it decreases when increasing the number of layers. Up to 4 GPa, the reduced strain in the layers closer to the substrate decreases the probability of the sp2-to-sp3 phase transition, explaining the lower stiffness observed in thicker h-BN.

8.
Zootaxa ; 4728(3): zootaxa.4728.3.3, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-32230562

RESUMO

Systematic investigations of vertebrate faunas from the islands of Melanesia are revealing high levels of endemism, dynamic biogeographic histories, and in some cases surprisingly long evolutionary histories of insularity. The bent-toed geckos in the Cyrtodactylus sermowaiensis Group mainly occur in northern New Guinea and nearby islands, however a further isolated population occurs on Manus Island in the Admiralty Archipelago approximately 300 km to the north of New Guinea. Here we first present a review of the genetic diversity, morphological variation and distribution of Cyrtodactylus sermowaiensis from northern New Guinea. Genetic structure and distributional records within Cyrtodactylus sermowaiensis broadly overlap with underlying Terranes in northern New Guinea, suggesting divergence on former islands that have been obscured by the infill and uplift of sedimentary basins since the late Pleistocene. Based on a combination of genetic and morphological differentiation we then describe the population from Manus Island as a new species, Cyrtodactylus crustulus sp. nov. This new species emphasises the high biological endemism and conservation significance of the Admiralty Islands, and especially Manus Island.


Assuntos
Lagartos , Animais , Evolução Biológica , Cor , Ecossistema , Filogenia
9.
Lab Chip ; 19(21): 3628-3640, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517362

RESUMO

Asphaltenes, among the most complex components of crude oil, vary in their molecular structure, composition, and self-assembly in porous media. This complexity makes them challenging in laboratory characterization methods. In the present work, a novel microfluidic device was designed to access in situ transient, high-fidelity information on asphaltene deposition and dissolution within porous media. The automated microfluidic device features three independent 4.5 µL packed-bed microreactors on the same chip. The deposition of asphaltenes was investigated at five different temperatures (ranging from 25-65 °C) in addition to dissociation with xylenes. Our findings demonstrate a decrease in the dispersity of asphaltene nanoaggregates in the porous media when the deposition temperature is increased. Furthermore, the direct quantification of the dissociation solvent was made possible by in situ Raman spectroscopy. The average occupancy of xylenes and xylene-free porous media (or unrecognized sites) was estimated to be 0.41 and 0.66, respectively. It was observed that asphaltenes deposited at higher deposition temperatures are more difficult to dissociate by xylenes than those deposited at lower temperatures. In order to develop efficient remediation treatments in energy production operations, the convoluted behaviours of asphaltenes in porous media must be understood on a molecular level. Automated microfluidic systems have the potential to streamline treatment designs, improve their efficiency, and enable the design of green chemistry in conventional energy production operations.

10.
Lab Chip ; 17(22): 3883-3890, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29051944

RESUMO

Gas-liquid interfaces broadly impact our planet, yet confined interfaces behave differently than unconfined ones. We report the role of tangential fluid motion in confined methane-water interfaces. The interfaces are created using microfluidics and investigated by in situ 1D, 2D and 3D Raman spectroscopy. The apparent CH4 and H2O concentrations are reported for Reynolds numbers (Re), ranging from 0.17 to 8.55. Remarkably, the interfaces are comprised of distinct layers of thicknesses varying from 23 to 57 µm. We found that rarefaction, mixture, thin film, and shockwave layers together form the interfaces. The results indicate that the mixture layer thickness (δ) increases with Re (δ ∝ Re), and traditional transport theory for unconfined interfaces does not explain the confined interfaces. A comparison of our results with thin film theory of air-water interfaces (from mass transfer experiments in capillary microfluidics) supports that the hydrophobicity of CH4 could decrease the strength of water-water interactions, resulting in larger interfacial thicknesses. Our findings help explain molecular transport in confined gas-liquid interfaces, which are common in a broad range of societal applications.

11.
Lab Chip ; 17(18): 3051-3060, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28829467

RESUMO

The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 µm s-1) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

12.
J Neurol Phys Ther ; 39(3): 172-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26050076

RESUMO

BACKGROUND AND PURPOSE: Fatigue is a common, disabling symptom experienced by persons with multiple sclerosis (MS). Evidence shows that intermittent exercise is associated in improved performance and negligible fatigue. The purpose of this study was to examine whether subjects with MS walk greater distances with less fatigue under intermittent (INT) or continuous (CONT) walking condition. METHODS: Twenty-seven subjects with MS (median Extended Disability Severity Scale 3.5, interquartile range 1.6) walked in the CONT (ie, 6 uninterrupted minutes) and INT (ie, three 2-minute walking bouts) conditions in a randomized crossover. Distance was measured for the entire 6-minute walking period and each 2-minute increment. Fatigue was measured as the difference in a visual analog scale of fatigue (ΔVAS-F) immediately preceding and following each trial. RESULTS: Participants walked greater distances in the INT condition compared to the CONT condition (P = 0.005). There was a significant interaction of walking condition and time (P < 0.001), indicating that the distances walked in the INT condition changed across time. ΔVAS-F was significantly lower in the INT condition than in the CONT condition (P = 0.036). DISCUSSION AND CONCLUSION: Subjects with MS walked farther, and with less fatigue, when walking intermittently rather than continuously. Persons with MS may be able to tolerate a greater dose of walking training if the walking bouts are intermittent. Further study to determine the benefits of a walking exercise program using intermittent walking is recommended.Video Abstract available for additional insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A103).


Assuntos
Pessoas com Deficiência/reabilitação , Terapia por Exercício/métodos , Fadiga/fisiopatologia , Esclerose Múltipla/reabilitação , Adulto , Idoso , Estudos Cross-Over , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Caminhada
13.
Lab Chip ; 14(12): 2014-22, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24777527

RESUMO

The deposition of asphaltenes in porous media, an important problem in science and macromolecular engineering, was for the first time investigated in a transparent packed-bed microreactor (µPBR) with online analytics to generate high-throughput information. Residence time distributions of the µPBR before and after loading with ~29 µm quartz particles were measured using inline UV-Vis spectroscopy. Stable packings of quartz particles with porosity of ~40% and permeability of ~500 mD were obtained. The presence of the packing materials reduced dispersion under the same velocity via estimation of dispersion coefficients and the Bodenstein number. Reynolds number was observed to influence the asphaltene deposition mechanism. For larger Reynolds numbers, mechanical entrapment likely resulted in significant pressure drops for less pore volumes injected and less mass of asphaltenes being retained under the same maximum dimensionless pressure drop. The innovation of packed-bed microfluidics for investigations on asphaltene deposition mechanisms could contribute to society by bridging macromolecular science with microsystems.

14.
Angew Chem Int Ed Engl ; 50(33): 7502-19, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21710673

RESUMO

The fine chemicals and pharmaceutical industries are transforming how their products are manufactured, where economically favorable, from traditional batchwise processes to continuous flow. This evolution is impacting synthetic chemistry on all scales-from the laboratory to full production. This Review discusses the relative merits of batch and micro flow reactors for performing synthetic chemistry in the laboratory.


Assuntos
Reatores Biológicos , Técnicas de Química Sintética/instrumentação , Técnicas de Química Sintética/métodos , Técnicas Analíticas Microfluídicas , Compostos Orgânicos/síntese química , Preparações Farmacêuticas/química , Indústria Farmacêutica , Laboratórios , Compostos Orgânicos/química
15.
Langmuir ; 27(10): 6519-27, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21510687

RESUMO

We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 µm with an average thickness of ∼7 µm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.

17.
Lab Chip ; 9(17): 2495-507, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19680575

RESUMO

Microchemical systems have evolved rapidly over the last decade with extensive chemistry applications. Such systems enable discovery and development of synthetic routes while simultaneously providing increased understanding of underlying pathways and kinetics. We review basic trends and aspects of microsystems as they relate to continuous-flow microchemical synthesis. Key literature reviews are summarized and principles governing different microchemical operations discussed. Current trends and limitations of microfabrication, micromixing, chemical synthesis in microreactors, continuous-flow separations, multi-step synthesis, and integration of analytics are delineated. We conclude by summarizing the major challenges and outlook related to these topics.

18.
Injury ; 40(11): 1157-60, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19486975

RESUMO

BACKGROUND: Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. METHODS: Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. RESULTS: The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. CONCLUSIONS: The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due to distraction rather than due to direct nerve root compression.


Assuntos
Vértebras Cervicais/patologia , Luxações Articulares/patologia , Raízes Nervosas Espinhais/patologia , Estresse Mecânico , Articulação Zigapofisária/lesões , Adulto , Idoso , Antropometria/métodos , Cadáver , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/lesões , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Luxações Articulares/complicações , Luxações Articulares/diagnóstico por imagem , Instabilidade Articular/etiologia , Masculino , Pessoa de Meia-Idade , Radiculopatia/etiologia , Radiculopatia/patologia , Raízes Nervosas Espinhais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Articulação Zigapofisária/patologia
19.
Lab Chip ; 9(13): 1843-9, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19532958

RESUMO

Distillation is a ubiquitous method of separating liquid mixtures based on differences in volatility. Performing such separations in microfluidic systems is difficult because interfacial forces dominate over gravitational forces. We describe distillation in microchemical systems and present an integrated silicon device capable of separating liquid mixtures based on boiling point differences. Microfluidic distillation is realized by establishing vapor-liquid equilibrium during segmented flow. Enriched vapor in equilibrium with liquid is then separated using capillary forces, and thus enabling a single-stage distillation operation. Design criteria for operation of on-chip distillation is set forth, and the working principle demonstrated by separation of binary mixtures of 50 : 50 mol% MeOH-toluene and 50 : 50 mol% DCM-toluene at 70.0 degrees C. Analysis of vapor condensate and liquid exiting a single-stage device gave MeOH mole fractions of 0.22 +/- 0.03 (liquid) and 0.79 +/- 0.06 (vapor). Similarly, DCM mole fractions were estimated to be 0.16 +/- 0.07 (liquid) and 0.63 +/- 0.05 (vapor). These experimental results were consistent with phase equilibrium predictions.


Assuntos
Fracionamento Químico/instrumentação , Metanol/isolamento & purificação , Cloreto de Metileno/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Tolueno/isolamento & purificação , Fracionamento Químico/métodos , Desenho de Equipamento , Metanol/análise , Cloreto de Metileno/análise , Tolueno/análise , Temperatura de Transição , Volatilização
20.
Langmuir ; 23(10): 5477-84, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17429989

RESUMO

Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed.


Assuntos
Ácido Clorídrico , Modelos Químicos , Zeolitas/química , Porosidade , Fatores de Tempo , Zeolitas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...